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Quasistationary trajectories of the mean-fieldXY Hamiltonian model: A topological perspective
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We employ a topological approach to investigate the nature of quasistationary states of the medyi-field
Hamiltonian model. We focus on the quasistationary states reached when the system is initially prepared in a
fully magnetized configuration. By means of numerical simulations and analytical considerations, we show
that, along the quasistationary trajectories, the system evolves in a manifold of critical points of the potential
energy function. Although these critical points are maxima, the large number of directions with marginal
stability may be responsible for the slow relaxation dynamics and the trapping of the system in such
trajectories.
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The so-called mean-fieldY Hamiltonian(HMF) model  nally, the infinite range of the interactions further simplifies
[1] has received great attention during recent years in thboth the dynamics and the thermodynamics of the model,
statistical mechanics community, mainly because of the richavoiding topological considerations on the structure of the
ness of its dynamical behavip2—8]. The model is defined lattice where particles are located. On the other hand, and
by a set ofN particles, or rotators, moving on a unitary also due to the infinite range of the interactions, its dynamics

circle. The dynamics of the system is ruled by the followingcan be efficiently integrated in computer simulations. There-
fore, this is an excellent prototype for analyzing the micro-

Hamiltonian: ) ; " - ;
\ \ scopic dynamics of a finite system close to a critical point.
1 , 1 The microcanonical simulations of the HMF model repro-
H= 52 P oN > [1-cog6, - 6)]. (1) duce many of the anomalous critical behaviors observed in
i=1 ij=1

nuclear and cluster fragmentation processes. In particular,
Here 6, represents the rotation angle of titie particle(with ~ depending on the initial preparation of the system, it is pos-
6 < (0,2]) andp; its conjugate momentum. This model can Sible to verify the existence of negative specific heat curves,
be considered as a kinetic version of the mean-fiéfdnag- qualitatively similar to those observed in recent fragmenta-

netic model with ferromagnetic interactions. From a thermo{g‘gri);‘éirs'q‘ﬁgrt;r'%j{ntﬁg frl:i:;[gfssﬁﬁ tfr?irs”r]nsct)?jr(]a(lzlé;?]e?n%x—
dynamical point of view the model is extremely simple, in gely

o . . ceeds this motivation. The existence of quasistatio(@$)
gor;}trqst t%'ts rich .anbSt!" not well ufno:grstogdl d.ilnam'(.:lilsolutions whose lifetimes divergg2,7], in the thermody-
ehavior. Un one side, being a mean-nieid model, IS equiliDya myica) |imitN— o, has raised the question of whether it is

rium thermadynamics can be exacily solved in the C"’mon'Ca{%ossible or not to construct a measure theory able to predict
ensemble, yielding a second-order ferromagnetic phase traysg giationary values of physical observables in long standing
sition. On the other side its relaxational dynamics is Veryout-of-equilibrium regimes$11]. Furthermore, the existence
complex and e'q_u'ilibrium .i.s not easily attai_ngd from an im-g¢ 5 glassylike relaxation dynami¢s,6] aloné QS trajecto-
portant set of initial conditionp7-9]. The origin of this ki-  jes has opened challenging questions on the origin of such
netic complexity is elusive and some similarity with the phe- \neynected behavior for an unfrustrasted nondisordered
nomenology of disordered systems has been advogafeq odel. Finally, in the last few years, the HMF model has
Nevertheless, the existence of this connection is not at alloo ysed as ,a paradigmatic examplé for the study of the so
obvious. In the first place, there is no imposed disorder oniaq topological hypothesig12-14 \;vhich asserts that
the Hamiltonian. Second, the couplings are all ferromagypaqe transitiongven in a finite systensan be identified by
netic, hence avoiding any kind of structural frustration. Fi-gearching for drastic topological changes in the submanifolds
of the interaction potential.
Concerning the HMF thermodynami€$], the usual mi-
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disordered one. Actually, one can associate to each rotator a 010 '
local magnetizationiy=(cosé;,sin #), and then define the A @)
order parameter of the transition as the global magnetization: 0.05 | ]
- 1w .
M =(M,M,) = = . (2) 0.00
N~ 0.500
VIN
At the critical energyM = |M| vanishes continuously as the 0.499
system is heated from the ordered phase.
Concerning the dynamics, when the system is prepared

A . . (e 0.498
very far from equilibrium, for energies just below the critical 0 5 ;10

one, the system gets trapped into quasiequilibrium trajecto-
ries. These trajectories are characterized by time averages of FIG. 1. Time evolution of(a) \, the largest modulus of the
one-time observables which reach, after a rapid initial tranderivatives ofVv, and(b) V/N, the potential energy per particle, for
sient, almost constant values that do not coincide with those system of 500 particles adl/ N=10, well above the phase tran-
predicted by canonical ensemble calculatip®s The aver-  sition. The system was initially prepared in a regular water-bag
age time that a system of sid¢remains in a QS trajectory configuration. The dotted line ifb) corresponds to the equilibrium
grows withN [2,7]. Therefore, if the system were infinite, it value in the thermodynamic limit.
would remain there forever, without ever reaching true equi-
librium. An even more surprising scenario appears when one Furthermore, CPs can be classified according to the eigen-
considers the relaxation of the two-time correlation functionvalues of the Hessian &f/N, which for the HMF model can
C(t,t") (either in the whole phase spal®| or considering be written asH=D+B [13], where
only the momentum spa¢é]). The explicit dependence &f
on both timed andt’ indicates the loss of time-translational B =— i(l -8)cod 6 - 6) - i
invariance, proper to equilibrium states, and the appearance J N2 ' N2
of memory effects, a phenomenon usually caleihg The
scaling law of the two-time autocorrelation functidis6] is
qualitatively similar to that observed in some real spin
glasseq[15]. Nevertheless we will show that the physical
mechanisms behind the QS states of the HMF model are In ourwork we use the following protocol: starting from a
Comp|ete|y different from those present in disordered Sysfar-from-equilibrium configuration, we integrate numerically
tems. the set of Hamilton equations of the system using a fourth
In this work we will show, through numerical simulations, order symplectic method with a very small time stéypi-
that the complex nonequilibrium QS regime observed jus€ally dt=0.01). Along the trajectories we evaluate, at each
below the critical energy can be interpreted from a topologitime step, the modulus of the derivatives ofV/N given by
cal point of view. Our analysis will focus on the topology of (4) and identify the maximum over=1, ... N, through
the surface defined by the potential energy in the configura- A(VIN) ‘

5ij!

S
D; = T\'IL(MX cosé, +Mysing,). (5

(6)

tion space. The HMF potential energy can be written in terms A =N max
of the order parameter of the system: :

Then, each time that=0, it means that the system reaches a
CP (actually, due to the finiteness of the time steps never
exactly zero, but it can get closer dsdecreases

Let us first analyze the behavior of the system in the dis-
ordered phase. It is important to stress that, although the
system ultimately relaxes to equilibrium, a slow relaxation
has been observed when starting very far from equilibrium
[8]. This is probably due to the fact that rotators move almost
freely, that is, a large system, in the high energy phase, is

_N 2
v_2(1 M?). (3

Note that the potential energy per parti&féN takes values

in the interval 6<V/N=<uv.=1/2. The lower limit corre-
sponds to the case of the fully ordered configuratigrence
M=1) and the upper bound to a completely disordered con
figuration. The configuration space manifolM is an

N-dimensional torus parametrized by theanglesé. The near integrable_ébeco_ming integrable in the "mN_’?O)' In
critical points(CP$ of M are those points for which all the that sense, trajectories are weakly chaotic. In fact, it has been

N derivatives of V/N vanish, i.e., d(V/N)/36,=0, for i shown that, at equilibrium, the largest Lyapunov exponent

=1,... N. Making use of the infinite range of interactions, goes to zero in the thermodynamic ling, 16].

one can write the derivatives of the potential in terms of theU /II\T—Tg ir%,trll\elz € diF')sléJ)rto\Igrg danr?a)s\eav?/eﬁ ;ll;gsgotueotf:tr,itifs; en-
two components of the order parameter, namely, o P

ergy U./N=3/4. Thesystem has been initially prepared in a
“water-bag” configuration, with all the rotators aligned along

M - EM sing - EM cosé =0 (4) the x axis (#,=0, for all i) and the momenta drawn from a
96 N~ ' y b uniform distribution(actually we used regularly spaced mo-
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0 5'0 1(‘)0 uIso 200 FIG. 4. Time evolution o\ andV/N for a system of 500 par-
t ticles andU/N=0.69, just below the phase transition. The system

] ) was initially prepared in a close to equilibrium configuration. The

FIG. 2. Time evolution of (a) andV/N (b) for a system of 500 yqted line corresponds to the equilibrium valueviN
particles andJ/N=0.69, just below the phase transition. The sys-
tem was initially prepared in a regular water-bag configuration. Thescape VIN=1/2, tries to escape downhill but uses the ki-
dotted and dashed lines i) correspond to equilibrium and me- oic energy gain to attain again CPs at the top. Somehow the
taequilibrium values in the thermodynamic limit, respectively. system is not able to relax from this level to the equilibrium
level during very large time scales. The slow relaxation can
be understood taking into account that the dynamics is
- A weakly chaotic, in a sense similar to that discussed above for
EEenceM =0). 'Indfa(f:t trtlet'olralsgrved period is of the order of the high energy regime. The largest Lyapunov exponent goes

e mean period of rotatiofi6]. . _ .to zero in the thermodynamic limit2], although with a

Let us now compare these results with those _o_btamed "Wlower power law than in the high energy phase. Also, the
the low energy phase, Just belqw the, phase transition. In t.h'aynamics remains near integrability, with a potential energy
case, .QS solut|ons.emerge, displaying a kind of g_lassyth//Nzllz (thus M =0), implying vanishingly small forces
dynamics characterized by weak chaos, non-Gaussian Veloﬁir large N '
gy dlstnl?utn\c;/nNs, an(;i)\subatglfng, Sian%nggneddabO\{e. Ln Fig. Sampled configurations correspond to the QS states where

, We plo an vs tior =0.69 and waterbag system stays during time spans that scale with theNsize

initial conditions. Here we verify that again the system Se'getting trapped forever, in the thermodynamic limit. One can

quentially visits one CP of the potential energy after anotherSa that. in confiquration space. OS states are alwavs near
also corresponding tv=0. However, at variance with the Y . 9 pace, Q y

, o . CPs of the landscape.
high energy phase, the time intervals elapsing between We next address the effect of system size. The same quali-

two successive CPs do not present any pattern of periOdiCit¥ative behavior can be observed, with a bigger numerical

On the contrary, the system visits the CPs in an apparentlgfrort for larger systems. The departure from the QRea-
disordered way. The probability distribution functioRDF) sured by thegheig)rqt of between cgnsecutive CPeecreases

P(A7) of time intervals be_tvveen CPs is shown in Fig. 3. asN increases, but the distribution d&fr remains unaltered.
P(A7) can be reasonably fitted by a power law decay. Othegqm Eqs (3) and(4), it is straightforward to see that at the

striking features of the dynamical behavior can be noted initical level v.=1/2 the CPs areontinuously degenerate.
Fig. 2. First, the syste_m is initialized in a co_nfiguration at theConsequentIy all grows and fluctuations outside the critical
bottom of the potential energy/N=0 and it goes almost |gye| diminish the system wanders more and more inside this
abruptly to a region with a mean potential energy per particlenanifold of CPs. As the energy decreases, the CPs are visited
larger than the equilibrium mean potential energy, and stayg,qre sparsely, down to/N=~0.67, where the system stops
near thi_s level during the whole time span of_ the simulationv\,(,mdermg among CPs. It is noteworthy that spatially homo-
In fact, it goes close to the top of the potential energy landyeneous states lose Vlasov stability approximately at that
S — energy[17].
P(AT) ¢ "».‘ ] A completely different scenario emerges when the system
107 | Cle 4 is prepared, at a given energy, in an almost equilibrated ini-
: ~(A‘C)'2'5 ] tial configuration. The plot o\ vs t presented in Fig. 4
L % 1 clearly indicates that, in this case, the syst@oes not wan-
10 3 o0 3 der among CPs. Its potential energy per partitad thus
e also its temperatujeapidly starts fluctuating around the ca-
10 _ L 3 nonical value, showing strong finite size effects.
; et P S A crucial piece of information comes from the stability of
10 Ar 100 the visited CPs. Since capturing the exact time at which the
dynamics passes through a CP is a difficult task, numerical
FIG. 3. Probability distribution functiod?(A7) of the time in-  evaluation of the Hessian at CPs arising from the dynamics
tervals between two consecutive critical points, for the same systeimay lead to wrong estimates. Therefore it is important to
of Fig. 2 perform some analytical calculations. In order to do so, let us

menta[17]). Figure 1 indicates that the system periodically
visits CPs of the potential, corresponding YWN=1/2
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recall that, both in the high energy phase and in the QSo ballistic behavior in the flat landscape of CPs during long
states, the CPs correspond\dN=1/2 (see Figs. 1 and)2 time scales. In the low energy, quasiequilibrium regime, ki-
hence they are points o¥1 with zero magnetization. More- netic energy is comparable to the potential one. At these
over, the distribution of angles at those points is approxitelatively low energies diffusion is slower than ballistic.
mately uniform[17]. A configuration with these characteris- Nevertheless, due to the flatness of configuration space su-
tics for which analytical calculations are possible, consists irperdiffusive behavior is observg8].

regularly distributed angles in the interved, 2], i.e., 6 Summarizing, we have seen, by means of numerical simu-
=2wk/N, k=1, ... N for evenN. If M=0, from Eq.(5), the lations, that the QS trajectories observed in the HMF model
Hessian of the potential energyhs=B. Then, for the regular can be interpreted in terms of the topological properties of

configuration we have the potential energy per partic/ N of the model. Starting
1 from a far-from-equilibrium configuration wit¢N/N=0, the
H=B=-—(1+A), (7)  system initially decreases as much as possible its kinetic en-
N

ergy and settles at thiéat top of its potential energy. The
simulations confirm that along the QS states the system wan-
I_ders among different CPs with only two negative directions
andN-2 marginal ones. Moreover, CPs at the upper critical
level are continuously degenerate. This suggests that once
( N2 ) inside this critical submanifold the system cannot go out eas-
H=- ,

whereA,,=cog2m(k—1)/N]. This circulant matrix can be di-
agonalized in Fourier space, yielding the following eigenva
ues of the Hessian matrix:

cogml) + 22, cog2mrl/N)cog2mr/N) ily and relax to equilibrium. The flat landscape view is con-

r=0 sistent with the fact that a large system stays near integrabil-

(8) ity, both in the high energy phase as well as in the QS states

S _ : close below the phase transition. In the thermodynamic limit,

for 1<I<N. Thus, we obtairH,=Hy,=-1/(2N) while the 0 5y stem becomes fully integrable, consistently with the

remaining eigenvalues are null. This means that at these CR§g it that all the eigenvalues of the HessiaVéR vanish.

there are two unstable directions ahe-2 marginal ones. A probable scenario in the thermodynamic limit is that, as
This picture remains valid for more general situations thanne fjyctuations of the potential energy close to the critical
those restricted to the particular regular cases. In fact, wg, g v.=1/2 go tozero, the system keeps wandering con-

have verified that when angles are randomly chosen in thgy,oysly inside the manifold of CPs and, consequently, re-
interval (0, 27] there are two eigenvalues with values closemains forever out of thermodynamic equilibrium.

to —1/(2N) and the remainingN—-2 vanish. Finally, the ei-

genvalues calculated from the configurations of the dynamics This work was partially supported by CONICEArgen-

very close to CPs are also consistent with this picture. Frontina), Agencia Cérdoba CiencigArgenting, Secretaria de

this analysis it is clear that in the high energy phase and als@iencia y Tecnologia de la Universidad Nacional de Cordoba

in the QS low energy states, the systems wanders in an alArgentind, and CNPq(Brazil). FA.T. and D.A. also ac-

most flat landscape. knowledge ICTP through Grant NET-61, Latinamerican Net-
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