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We employ a topological approach to investigate the nature of quasistationary states of the mean-fieldXY
Hamiltonian model. We focus on the quasistationary states reached when the system is initially prepared in a
fully magnetized configuration. By means of numerical simulations and analytical considerations, we show
that, along the quasistationary trajectories, the system evolves in a manifold of critical points of the potential
energy function. Although these critical points are maxima, the large number of directions with marginal
stability may be responsible for the slow relaxation dynamics and the trapping of the system in such
trajectories.
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The so-called mean-fieldXY Hamiltonian sHMFd model
f1g has received great attention during recent years in the
statistical mechanics community, mainly because of the rich-
ness of its dynamical behaviorf2–8g. The model is defined
by a set ofN particles, or rotators, moving on a unitary
circle. The dynamics of the system is ruled by the following
Hamiltonian:
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f1 − cossui − u jdg. s1d

Hereui represents the rotation angle of theith particleswith
ui P s0,2pgd andpi its conjugate momentum. This model can
be considered as a kinetic version of the mean-fieldXY mag-
netic model with ferromagnetic interactions. From a thermo-
dynamical point of view the model is extremely simple, in
contrast to its rich and still not well understood dynamical
behavior. On one side, being a mean-field model, its equilib-
rium thermodynamics can be exactly solved in the canonical
ensemble, yielding a second-order ferromagnetic phase tran-
sition. On the other side its relaxational dynamics is very
complex and equilibrium is not easily attained from an im-
portant set of initial conditionsf7–9g. The origin of this ki-
netic complexity is elusive and some similarity with the phe-
nomenology of disordered systems has been advocatedf5,6g.
Nevertheless, the existence of this connection is not at all
obvious. In the first place, there is no imposed disorder on
the Hamiltonian. Second, the couplings are all ferromag-
netic, hence avoiding any kind of structural frustration. Fi-

nally, the infinite range of the interactions further simplifies
both the dynamics and the thermodynamics of the model,
avoiding topological considerations on the structure of the
lattice where particles are located. On the other hand, and
also due to the infinite range of the interactions, its dynamics
can be efficiently integrated in computer simulations. There-
fore, this is an excellent prototype for analyzing the micro-
scopic dynamics of a finite system close to a critical point.

The microcanonical simulations of the HMF model repro-
duce many of the anomalous critical behaviors observed in
nuclear and cluster fragmentation processes. In particular,
depending on the initial preparation of the system, it is pos-
sible to verify the existence of negative specific heat curves,
qualitatively similar to those observed in recent fragmenta-
tion experiments in small clustersssee for instancef10g and
references thereind. But the interest in this model largely ex-
ceeds this motivation. The existence of quasistationarysQSd
solutions whose lifetimes divergef2,7g, in the thermody-
namical limit N→`, has raised the question of whether it is
possible or not to construct a measure theory able to predict
the stationary values of physical observables in long standing
out-of-equilibrium regimesf11g. Furthermore, the existence
of a glassylike relaxation dynamicsf5,6g along QS trajecto-
ries has opened challenging questions on the origin of such
unexpected behavior for an unfrustrasted nondisordered
model. Finally, in the last few years, the HMF model has
been used as a paradigmatic example, for the study of the so
called topological hypothesisf12–14g which asserts that
phase transitions,even in a finite system, can be identified by
searching for drastic topological changes in the submanifolds
of the interaction potential.

Concerning the HMF thermodynamicsf1g, the usual mi-
crocanonical and canonical calculations predict that the sys-
tem suffers a second order phase transition atTc=1/2 swhich
corresponds to an internal energy per particleUc/N=3/4d,
from a low temperature ordered phase to a high temperature
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disordered one. Actually, one can associate to each rotator a
local magnetizationmW i =scosui ,sinuid, and then define the
order parameter of the transition as the global magnetization:

MW = sMx,Myd =
1

N
o

i

mW i . s2d

At the critical energy,M ;uMW u vanishes continuously as the
system is heated from the ordered phase.

Concerning the dynamics, when the system is prepared
very far from equilibrium, for energies just below the critical
one, the system gets trapped into quasiequilibrium trajecto-
ries. These trajectories are characterized by time averages of
one-time observables which reach, after a rapid initial tran-
sient, almost constant values that do not coincide with those
predicted by canonical ensemble calculationsf2g. The aver-
age time that a system of sizeN remains in a QS trajectory
grows withN f2,7g. Therefore, if the system were infinite, it
would remain there forever, without ever reaching true equi-
librium. An even more surprising scenario appears when one
considers the relaxation of the two-time correlation function
Cst ,t8d seither in the whole phase spacef5g or considering
only the momentum spacef6gd. The explicit dependence ofC
on both timest andt8 indicates the loss of time-translational
invariance, proper to equilibrium states, and the appearance
of memory effects, a phenomenon usually calledaging. The
scaling law of the two-time autocorrelation functionsf5,6g is
qualitatively similar to that observed in some real spin
glassesf15g. Nevertheless we will show that the physical
mechanisms behind the QS states of the HMF model are
completely different from those present in disordered sys-
tems.

In this work we will show, through numerical simulations,
that the complex nonequilibrium QS regime observed just
below the critical energy can be interpreted from a topologi-
cal point of view. Our analysis will focus on the topology of
the surface defined by the potential energy in the configura-
tion space. The HMF potential energy can be written in terms
of the order parameter of the system:

V =
N

2
s1 − M2d. s3d

Note that the potential energy per particleV/N takes values
in the interval 0øV/Nøvc;1/2. The lower limit corre-
sponds to the case of the fully ordered configurationsshence
M =1d and the upper bound to a completely disordered con-
figuration. The configuration space manifoldM is an
N-dimensional torus parametrized by theN anglesui. The
critical pointssCPsd of M are those points for which all the
N derivatives of V/N vanish, i.e., ]sV/Nd /]ui =0, for i
=1, . . . ,N. Making use of the infinite range of interactions,
one can write the derivatives of the potential in terms of the
two components of the order parameter, namely,

]V/N

]ui
=

1

N
Mx sinui −

1

N
My cosui = 0. s4d

Furthermore, CPs can be classified according to the eigen-
values of the Hessian ofV/N, which for the HMF model can
be written asH =D+B f13g, where

Bij = −
1

N2s1 − di jdcossui − u jd −
1

N2di j ,

Dij =
di j

N
sMx cosui + My sinuid. s5d

In our work we use the following protocol: starting from a
far-from-equilibrium configuration, we integrate numerically
the set of Hamilton equations of the system using a fourth
order symplectic method with a very small time stepstypi-
cally dt=0.01d. Along the trajectories we evaluate, at each
time step, the modulus of theN derivatives ofV/N given by
s4d and identify the maximum overi =1, . . . ,N, through

l = N max
i
U ]sV/Nd

]ui
U . s6d

Then, each time thatl=0, it means that the system reaches a
CPsactually, due to the finiteness of the time step,l is never
exactly zero, but it can get closer asdt decreasesd.

Let us first analyze the behavior of the system in the dis-
ordered phase. It is important to stress that, although the
system ultimately relaxes to equilibrium, a slow relaxation
has been observed when starting very far from equilibrium
f8g. This is probably due to the fact that rotators move almost
freely, that is, a large system, in the high energy phase, is
near integrablesbecoming integrable in the limitN→`d. In
that sense, trajectories are weakly chaotic. In fact, it has been
shown that, at equilibrium, the largest Lyapunov exponent
goes to zero in the thermodynamic limitf3,16g.

In Fig. 1, we plot V/N and l as a function oft, for
U /N=10, in the disordered phase well above the critical en-
ergyUc/N=3/4. Thesystem has been initially prepared in a
“water-bag” configuration, with all the rotators aligned along
the x axis sui =0, for all id and the momenta drawn from a
uniform distributionsactually we used regularly spaced mo-

FIG. 1. Time evolution ofsad l, the largest modulus of the
derivatives ofV, andsbd V/N, the potential energy per particle, for
a system of 500 particles andU /N=10, well above the phase tran-
sition. The system was initially prepared in a regular water-bag
configuration. The dotted line insbd corresponds to the equilibrium
value in the thermodynamic limit.
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mentaf17gd. Figure 1 indicates that the system periodically
visits CPs of the potential, corresponding toV/N=1/2
shenceM =0d. In fact the observed period is of the order of
the mean period of rotationf16g.

Let us now compare these results with those obtained in
the low energy phase, just below the phase transition. In this
case, QS solutions emerge, displaying a kind of glassylike
dynamics characterized by weak chaos, non-Gaussian veloc-
ity distributions, and subaging, as mentioned above. In Fig.
2, we plot V/N and l vs t for U /N=0.69 and water-bag
initial conditions. Here we verify that again the system se-
quentially visits one CP of the potential energy after another,
also corresponding toM =0. However, at variance with the
high energy phase, the time intervalsDt elapsing between
two successive CPs do not present any pattern of periodicity.
On the contrary, the system visits the CPs in an apparently
disordered way. The probability distribution functionsPDFd
PsDtd of time intervals between CPs is shown in Fig. 3.
PsDtd can be reasonably fitted by a power law decay. Other
striking features of the dynamical behavior can be noted in
Fig. 2. First, the system is initialized in a configuration at the
bottom of the potential energyV/N=0 and it goes almost
abruptly to a region with a mean potential energy per particle
larger than the equilibrium mean potential energy, and stays
near this level during the whole time span of the simulation.
In fact, it goes close to the top of the potential energy land-

scape,V/N<1/2, tries to escape downhill but uses the ki-
netic energy gain to attain again CPs at the top. Somehow the
system is not able to relax from this level to the equilibrium
level during very large time scales. The slow relaxation can
be understood taking into account that the dynamics is
weakly chaotic, in a sense similar to that discussed above for
the high energy regime. The largest Lyapunov exponent goes
to zero in the thermodynamic limitf2g, although with a
slower power law than in the high energy phase. Also, the
dynamics remains near integrability, with a potential energy
V/N<1/2 sthus M <0d, implying vanishingly small forces
for largeN.

Sampled configurations correspond to the QS states where
the system stays during time spans that scale with the sizeN,
getting trapped forever, in the thermodynamic limit. One can
say that, in configuration space, QS states are always near
CPs of the landscape.

We next address the effect of system size. The same quali-
tative behavior can be observed, with a bigger numerical
effort, for larger systems. The departure from the CPssmea-
sured by the height ofl between consecutive CPsd decreases
asN increases, but the distribution ofDt remains unaltered.
From Eqs.s3d ands4d, it is straightforward to see that at the
critical level vc=1/2 the CPs arecontinuously degenerate.
Consequently asN grows and fluctuations outside the critical
level diminish the system wanders more and more inside this
manifold of CPs. As the energy decreases, the CPs are visited
more sparsely, down toU /N<0.67, where the system stops
wandering among CPs. It is noteworthy that spatially homo-
geneous states lose Vlasov stability approximately at that
energyf17g.

A completely different scenario emerges when the system
is prepared, at a given energy, in an almost equilibrated ini-
tial configuration. The plot ofl vs t presented in Fig. 4
clearly indicates that, in this case, the systemdoes not wan-
der among CPs. Its potential energy per particlesand thus
also its temperatured rapidly starts fluctuating around the ca-
nonical value, showing strong finite size effects.

A crucial piece of information comes from the stability of
the visited CPs. Since capturing the exact time at which the
dynamics passes through a CP is a difficult task, numerical
evaluation of the Hessian at CPs arising from the dynamics
may lead to wrong estimates. Therefore it is important to
perform some analytical calculations. In order to do so, let us

FIG. 2. Time evolution ofl sad andV/N sbd for a system of 500
particles andU /N=0.69, just below the phase transition. The sys-
tem was initially prepared in a regular water-bag configuration. The
dotted and dashed lines insbd correspond to equilibrium and me-
taequilibrium values in the thermodynamic limit, respectively.

FIG. 3. Probability distribution functionPsDtd of the time in-
tervals between two consecutive critical points, for the same system
of Fig. 2

FIG. 4. Time evolution ofl andV/N for a system of 500 par-
ticles andU /N=0.69, just below the phase transition. The system
was initially prepared in a close to equilibrium configuration. The
dotted line corresponds to the equilibrium value ofV/N
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recall that, both in the high energy phase and in the QS
states, the CPs correspond toV/N=1/2 ssee Figs. 1 and 2d;
hence they are points ofM with zero magnetization. More-
over, the distribution of angles at those points is approxi-
mately uniformf17g. A configuration with these characteris-
tics for which analytical calculations are possible, consists in
regularly distributed angles in the intervals0,2pg, i.e., uk

=2pk/N, k=1, . . . ,N for evenN. If M =0, from Eq.s5d, the
Hessian of the potential energy isH =B. Then, for the regular
configuration we have

H = B = −
1

N2s1 + Ad, s7d

whereAkl=cosf2psk− ld /Ng. This circulant matrix can be di-
agonalized in Fourier space, yielding the following eigenval-
ues of the Hessian matrix:

Hl = −
1

N2Scosspld + 2o
r=0

N/2

coss2prl /Ndcoss2pr/NdD ,

s8d

for 1ø l øN. Thus, we obtainH1=HN−1=−1/s2Nd while the
remaining eigenvalues are null. This means that at these CPs
there are two unstable directions andN−2 marginal ones.
This picture remains valid for more general situations than
those restricted to the particular regular cases. In fact, we
have verified that when angles are randomly chosen in the
interval s0,2pg there are two eigenvalues with values close
to −1/s2Nd and the remainingN−2 vanish. Finally, the ei-
genvalues calculated from the configurations of the dynamics
very close to CPs are also consistent with this picture. From
this analysis it is clear that in the high energy phase and also
in the QS low energy states, the systems wanders in an al-
most flat landscape.

In the high energy phase, energy is mainly kinetic, leading

to ballistic behavior in the flat landscape of CPs during long
time scales. In the low energy, quasiequilibrium regime, ki-
netic energy is comparable to the potential one. At these
relatively low energies diffusion is slower than ballistic.
Nevertheless, due to the flatness of configuration space su-
perdiffusive behavior is observedf8g.

Summarizing, we have seen, by means of numerical simu-
lations, that the QS trajectories observed in the HMF model
can be interpreted in terms of the topological properties of
the potential energy per particleV/N of the model. Starting
from a far-from-equilibrium configuration withV/N=0, the
system initially decreases as much as possible its kinetic en-
ergy and settles at theflat top of its potential energy. The
simulations confirm that along the QS states the system wan-
ders among different CPs with only two negative directions
andN−2 marginal ones. Moreover, CPs at the upper critical
level are continuously degenerate. This suggests that once
inside this critical submanifold the system cannot go out eas-
ily and relax to equilibrium. The flat landscape view is con-
sistent with the fact that a large system stays near integrabil-
ity, both in the high energy phase as well as in the QS states
close below the phase transition. In the thermodynamic limit,
the system becomes fully integrable, consistently with the
result that all the eigenvalues of the Hessian ofV/N vanish.

A probable scenario in the thermodynamic limit is that, as
the fluctuations of the potential energy close to the critical
level vc=1/2 go tozero, the system keeps wandering con-
tinuously inside the manifold of CPs and, consequently, re-
mains forever out of thermodynamic equilibrium.
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